Menu

Willuhn Group

ERC Starting Grant for Ingo Willuhn

The European Research Council (ERC) has awarded a Starting Grant to Ingo Willuhn for his research on regional dopamine release. A Starting Grant is a personal grant of 1.5 million euros which is meant to support talented researchers for a period of five years while they conduct research.

Ingo WilluhnWilluhn will focus on a part of the brain known as the striatum, which has multiple functional domains. The limbic system, for example, is thought to be responsible for regulating the motivational aspects of actions, while the sensorimotor part is believed to be involved in automatisation (habit forming). Besides investigating how both domains communicate with each other, Willuhn will also focus on the question of whether the compulsive execution of automatic actions (typical for obsessive-compulsive disorder and substance addiction) is related to the disruption of dopamine signals in the striatum.

Share

Willuhn Group

Neuromodulation & Behavior

This pre-clinical research group headed by Ingo Willuhn is embedded in a larger clinical research team at the AMC department of Psychiatry. The group is driven by the question: “How do we control our behavior?”. Specifically, the Neuromodulation and Behavior group is interested in the neurobiology of compulsive behavior and in mechanisms through which actions become automatic with a focus on basal ganglia function and dopamine signaling. Furthermore, the group studies the effects of deep-brain stimulation (DBS) on brain and behavior.

What is compulsivity? Compulsivity is behavior that is out of control, behavior we perform despite not wanting to perform it or despite its negative outcome. Compulsive behavior is performed persistently, repetitively, and inflexibly. But how does compulsivity develop? What is its neurobiological basis? To answer these questions, we investigate different aspects of compulsivity (e.g., automation of behavior, cognitive (in-)flexibility) and measure/modulate neuronal activity in the brain simultaneously.

Compulsivity is a core feature in several neuropsychiatric disorders, such as obsessive-compulsive disorder (OCD) and drug addiction. In otherwise therapy-resistant patients of such disorders, DBS has been effective. However, our understanding of the mechanisms of action of DBS is still limited. Therefore, we aim to investigate how DBS affects compulsivity and what the neurobiological basis of these effects is.

Our group has a strong collaborative relationship to the Department of Psychiatry at the Amsterdam Medical Center (AMC) lead by Damiaan Denys and therefore has close ties with clinicians and clinical researchers, providing optimal conditions for a translational and multidisciplinary approach. Specifically, we translate clinical findings from studies in humans into relevant animal models, and vice versa we aim to apply our conclusions in the clinical setting. At the very core of our research is the study of rodent behavior. On one hand, we test compulsive behavior itself by using behavioral, (e.g., signal attenuation, schedule-induced polydipsia), pharmacological (drug self-administration), and genetic (SAPAP3-KO mice) animal models. On the other hand, we study “normal’ behavioral faculties such as habit formation, response flexibility, emotion, and cognition (e.g., elevated plus maze, operant chambers) that may contribute to compulsivity when dysregulated. We combine behavioral testing with state-of-the-art research tools including diverse methods for brain stimulation (e.g., DBS, chemogenetics, optogenetics), neurochemical measurements (e.g., microdialysis, fast-scan cyclic voltammetry), calcium imaging (implantable miniaturized microscopes), and electrophysiological recordings (e.g., single-unit activity, local field potentials (LFPs)). Furthermore, we use functional magnetic resonance imaging (fMRI) in rodents to detect the effects of drugs and DBS throughout the brain.

 

twitter_logo_blueFollow the Willuhn lab on Twitter

Read more