Support our work
Decorative header background

Publications by year


  1. Flexible Working Memory Through Selective Gating and Attentional Tagging. Kruijne W, Bohte SM, Roelfsema PR, Olivers CNL. Neural Comput. 2021 Jan;33(1):1-40. doi: 10.1162/neco_a_01339. Epub 2020 Oct 20. PMID: 33080159. [sc name=”emaildownloadlink” popupid=”popup63″ ]
  2. The essential role of recurrent processing for figure-ground perception in mice. Kirchberger L, Mukherjee S, Schnabel UH, van Beest EH, Barsegyan A, Levelt CN, Heimel JA, Lorteije JAM, van der Togt C, Self MW, Roelfsema PR. Sci Adv. 2021 Jun 30;7(27):eabe1833. doi: 10.1126/sciadv.abe1833. PMID: 34193411. [sc name=”emaildownloadlink” popupid=”popup66″ ]
  3. Mouse visual cortex contains a region of enhanced spatial resolution. van Beest EH, Mukherjee S, Kirchberger L, Schnabel UH, van der Togt C, Teeuwen RRM, Barsegyan A, Meyer AF, Poort J, Roelfsema PR, Self MW. Nat Commun. 2021 Jun 29;12(1):4029. doi: 10.1038/s41467-021-24311-5. PMID: 34188047. [sc name=”emaildownloadlink” popupid=”popup67″ ]
  4. Learning continuous-time working memory tasks with on-policy neural reinforcement learning Davide Zambrano, Pieter R. Roelfsema, Sander Bohte. Neurocomputing, Volume 461, 2021, Pages 635-656,ISSN 0925-2312,[sc name=”emaildownloadlink” popupid=”popup68″ ]
  5. A Direct Comparison of Spatial Attention and Stimulus–Response Compatibility between Mice and Humans. Ulf H. Schnabel, Tobias Van der Bijl, Pieter R. Roelfsema, Jeannette A. M. Lorteije. J Cogn Neurosci 2021; 33 (5): 771–783. doi: [sc name=”emaildownloadlink” popupid=”popup69″ ]
  6. A neuronal basis of iconic memory in macaque primary visual cortex. Rob R.M. Teeuwen, Catherine Wacongne, Ulf H. Schnabel, Matthew W. Self, Pieter R. Roelfsema. Current Biology, 2021,ISSN 0960-9822, [sc name=”emaildownloadlink” popupid=”popup70″ ]
  7. Population receptive fields in nonhuman primates from whole-brain fMRI and large-scale neurophysiology in visual cortex. Klink PC, Chen X, Vanduffel W, Roelfsema PR. Elife. 2021 Nov 3;10:e67304. doi: 10.7554/eLife.67304. PMID: 34730515.[sc name=”emaildownloadlink” popupid=”popup71″ ]
  8. Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex. Fernández E, Alfaro A, Soto-Sánchez C, Gonzalez-Lopez P, Lozano AM, Peña S, Grima MD, Rodil A, Gómez B, Chen X, Roelfsema PR, Rolston JD, Davis TS, Normann RA. J Clin Invest. 2021 Dec 1;131(23):e151331. doi: 10.1172/JCI151331. PMID: 34665780; PMCID: PMC8631600.[sc name=”emaildownloadlink” popupid=”popup72″ ]


  1. Conscious Processing and the Global Neuronal Workspace Hypothesis. Mashour GA, Roelfsema P, Changeux JP, Dehaene S. Neuron. 2020 Mar 4;105(5):776-798. doi: 10.1016/j.neuron.2020.01.026. Review. PubMed PMID: 32135090. [sc name=”emaildownloadlink” popupid=”popup55″ ]
  2. Writing to the Mind’s Eye of the Blind. Pieter R. Roelfsema, Cell, Volume 181, Issue 4, 2020;758-759, [sc name=”emaildownloadlink” popupid=”popup56″ ]
  3. The Contribution of AMPA and NMDA Receptors to Persistent Firing in the Dorsolateral Prefrontal Cortex in Working Memory. van Vugt B, van Kerkoerle T, Vartak D, Roelfsema PR. J. Neurosci. 2020 Mar 18;40(12):2458-2470. doi:10.1523/JNEUROSCI.2121-19.2020. [sc name=”emaildownloadlink” popupid=”popup57″ ]
  4. PRIMatE Data Exchange (PRIME-DE) Global Collaboration Workshop and Consortium. Accelerating the Evolution of Nonhuman Primate Neuroimaging.; Neuron. 2020 Feb 19;105(4):600-603.doi: 10.1016/j.neuron.2019.12.023. Review. [sc name=”emaildownloadlink” popupid=”popup58″ ]
  5. How Does the Brain Learn to Link Things Together? Reddy L, Self M and Roelfsema P (2020). Front. Young Minds. 8:144. doi: 10.3389/frym.2019.00144 [sc name=”emaildownloadlink” popupid=”popup59″ ]
  6. Reflections on the past two decades of neuroscience. Bassett DS, Cullen KE, Eickhoff SB, Farah MJ, Goda Y, Haggard P, Hu H, Hurd YL, Josselyn SA, Khakh BS, Knoblich JA, Poirazi P, Poldrack RA, Prinz M, Roelfsema PR, Spires-Jones TL, Sur M, Ueda HR. Nat Rev Neurosci. 2020 Oct;21(10):524-534. doi: 10.1038/s41583-020-0363-6. Epub 2020 Sep 2. PMID: 32879507.[sc name=”emaildownloadlink” popupid=”popup60″]
  7. Object Selection by Automatic Spreading of Top-Down Attentional Signals in V1. Ekman M, Roelfsema PR, de Lange FP. J Neurosci. 2020 Nov 25;40(48):9250-9259. doi: 10.1523/JNEUROSCI.0438-20.2020. Epub 2020 Oct 21. PMID: 33087475[sc name=”emaildownloadlink” popupid=”popup61″]
  8. Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex. Chen X, Wang F, Fernandez E, Roelfsema PR. Science. 2020 Dec4;370(6521):1191-1196. doi: 10.1126/science.abd7435. PMID: 33273097. [sc name=”emaildownloadlink” popupid=”popup62″]
  9. Attention for action in visual working memory. Olivers CNL, Roelfsema PR. Cortex. 2020 Oct;131:179-194. doi: 10.1016/j.cortex.2020.07.011. [sc name=”emaildownloadlink” popupid=”popup64″]
  10. A Quantitative Comparison of Inhibitory Interneuron Size and Distribution between Mouse and Macaque V1, Using Calcium-Binding Proteins. Roxana N. Kooijmans, Wesley Sierhuis, Matthew W. Self and Pieter R. Roelfsema. Cerebral Cortex Communications, 2020, 1, 1–14. doi:10.1093/texcom/tgaa068 [sc name=”emaildownloadlink” popupid=”popup65″]


  1. Neuroscience: Figured Out by Feedback to the Thalamus. Self MW, Roelfsema PR. Curr Biol. 2019 Jun 17;29(12):R574-R577. doi: 10.1016/j.cub.2019.05.022 PubMed PMID: 31211977.[sc name=”emaildownloadlink” popupid=”popup3″ ]
  2. Benchmarking laminar fMRI: Neuronal spiking and synaptic activity during top-down and bottom-up processing in the different layers of cortex. Self MW, van Kerkoerle T, Goebel R, Roelfsema PR. Neuroimage. 2019 Aug 15;197:806-817. doi: 10.1016/j.neuroimage.2017.06.045. Epub 2017 Jun 23. Review. PubMed PMID: 28648888.[sc name=”emaildownloadlink” popupid=”popup4″ ]
  3. The segmentation of proto-objects in monkey primary visual cortex. Self, M.W., Jeurissen, D., van Ham, A.F., van Vugt, B., Poort, J. and Roelfsema, P.R. (2019) Curr. Biol. 29, 1019-1029.[sc name=”emaildownloadlink” popupid=”popup20″ ]
  4. The essential components of an optimization-based framework for systems neuroscience. Richards, B.A., Lillicrap, T.P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A., Clopath, C., de Berker, A., Ganguli, S., Gillon, C.J., Hafner, D., Kepecs, A., Kriegeskorte, N., Latham, P., Lindsay, G.W., Miller, K., Naud, R., Pack, C.C., Poirazi, P., Costa, P.R., Roelfsema, P., Sacramento, J., Saxe, A., Schapiro, A., Senn, W., Wayne, G., Yamins, D., Zenke, F., Zylberberg, J., Therien, D., Kording, K.P. (2019) Nature Neurosci. 22, 1761-1770. [sc name=”emaildownloadlink” popupid=”popup22″ ]
  5. Activity in lateral visual areas contributes to surround suppression in awake mouse V1 Vangeneugden, J., van Beest, E.H., Cohen, M.X., Lorteije, J.A.M., Mukherjee, S., Kirchberger, L., Montijn, J.S., Thamizharasu, P., Camillo, D., Levelt, C.N., Roelfsema, P.R., Self, M.S., Heimel, J.A. (2019). Curr. Biol. 29, 1-8, [sc name=”emaildownloadlink” popupid=”popup21″ ]
  6. Going from neurons to minds [editorial-voices] Roelfsema, P.R. (2019) Cell 179, 283-284. [sc name=”emaildownloadlink” popupid=”popup23″ ]


  1. Control of synaptic plasticity in deep cortical networks. Pieter R. Roelfsema; Anthony Holtmaat (2018) Nature Reviews Neuroscience 19, 166. doi:10.1038/nrn.2018.6 [sc name=”emaildownloadlink” popupid=”popup5″ ]
  2. The threshold for conscious report: Signal loss and response bias in visual and frontal cortex. Bram van Vugt, Bruno Dagnino, Devavrat Vartak, Houman Safaai, Stefano Panzeri, Stanislas Dehaene, Pieter R. Roelfsema. (2018) Science 04 May 2018 Vol. 360, Issue 6388, pp. 537-542 DOI: 10.1126/science.aar7186 [sc name=”emaildownloadlink” popupid=”popup6″ ],   [Data set]. Human Brain Project, EBRAINS. DOI: 10.25493/REHY-EEX
  3. Mind Reading and Writing: The Future of Neurotechnology. Roelfsema PR, Denys D, Klink PC. (2018) Trends Cogn Sci. Jul;22(7):598-610. doi:10.1016/j.tics.2018.04.001. [sc name=”emaildownloadlink” popupid=”popup7″ ]
  4. Feedforward and feedback processing during figure-ground perception in mice. Ulf H. Schnabel, Lisa Kirchberger1, Enny H. van Beest, Sreedeep Mukherjee, Areg Barsegyan, Jeannette A. M. Lorteije, Chris van der Togt, Matthew W. Self & Pieter R. Roelfsema, bioRxiv preprint first posted online Oct. 30, 2018; doi:[sc name=”emaildownloadlink” popupid=”popup8″ ] [Suppl.]
  5. NeuroResource, An Open Resource for Non-human Primate Imaging. MilHam et al., (2018) Neuron, 100:61–74. [sc name=”emaildownloadlink” popupid=”popup9″ ]
  6. Reply to ‘Can neocortical feedback alter the sign of plasticity?’ Pieter R. Roelfsema and Anthony Holtmaat. (2018) Nat. Rev. Neurosci. 19(10):637-638. doi:10.1038/s41583-018-0048-6. [sc name=”emaildownloadlink” popupid=”popup10″ ]
  7. Figure-ground perception in the awake mouse and neuronal activity elicited by figure-ground stimuli in primary visual cortex. Schnabel UH, Bossens C, Lorteije JAM, Self MW, Op de Beeck H, Roelfsema PR. Sci Rep. 2018 Dec 12;8(1):17800. doi: 10.1038/s41598-018-36087-8.[sc name=”emaildownloadlink” popupid=”popup11″ ]


  1. The Distributed Nature of Working Memory. Christophel T.B., Klink P.C., Spitzer B., Roelfsema P.R., Haynes J.D. (2017) Trends Cogn Sci.: S1364-6613(16)30217-0. [sc name=”emaildownloadlink” popupid=”popup12″ ]
  2. Paying Attention to the Cortical Layers. Self M.W., Roelfsema P.R. (2017) Neuron. Jan 4;93(1):9-11. [sc name=”emaildownloadlink” popupid=”popup13″ ]
  3. Layer-specificity in the effects of attention and working memory on activity in primary visual cortex. van Kerkoerle T., Self M.W., Roelfsema P.R. (2017) Nat Commun. Jan 5;8:13804. [sc name=”emaildownloadlink” popupid=”popup14″ ]
  4. 3D printing and modelling of customized implants and surgical guides for non-human primates. Xing Chen, Jessy K. Possel, Catherine Wacongne, Anne F. van Ham,P. Christiaan Klink, Pieter R. Roelfsema. (2017) Journal of Neuroscience Methods, 286:38–55. [sc name=”emaildownloadlink” popupid=”popup15″ ]
  5. Electrochemical Measurement Of Acetylcholine In The Dorsolateral Prefrontal Cortex: A Technical Report. Devavrat Vartak, Chris van der Togt, Bram van Vugt, Pieter R Roelfsema.
  6. Neuroscience: Out of Sight but Not Out of Mind. Self M.W., Roelfsema P.R. Curr Biol. (2017) Apr 3;27(7):R269-R271. [sc name=”emaildownloadlink” popupid=”popup16″ ]
  7. Serial, Parallel and hierarchical decision-making in primates. Zylberberg, A., Lorteije, J.A.M., Ouellette, B.G., De Zeeuw, C.I., Sigman, M. and Roelfsema, P.R. (2017) eLife 6, e17331. DOI: 10.7554/eLife.17331. [sc name=”emaildownloadlink” popupid=”popup17″ ]
  8. Distinct Feedforward and Feedback Effects of Microstimulation in Visual Cortex Reveal Neural Mechanisms of Texture Segregation. P. Christiaan Klink, Bruno Dagnino, Marie-Alice Gariel-Mathis, Pieter R. Roelfsema.(2017) Neuron 95, 209–220.[sc name=”emaildownloadlink” popupid=”popup18″ ]
  9. Interocularly merged face percepts eliminate binocular rivalry. Klink PC, Boucherie D, Denys D, Roelfsema PR, Self MW. (2017) Sci Rep. 7(1):7585. [sc name=”emaildownloadlink” popupid=”popup19″ ]
  10. The influence of attention and reward on the learning of stimulus-response associations. Devavrat Vartak; Danique Jeurissen; Matthew W. Self; Pieter R. Roelfsema. Scientific Reports. (2017, online)


  1. Learning a New Selection Rule in Visual and Frontal Cortex. Chris van der Togt, Liviu Stanisor, Arezoo Pooresmaeili, Larissa Albantakis, Gustavo Deco, and Pieter R. Roelfsema. (2016) Cerebral Cortex, 26: 3611–3626 [sc name=”emaildownloadlink” popupid=”popup24″ ]
  2. Binocular rivalry outside the scope of awareness. Klink PC, Roelfsema PR. Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):8352-4.[sc name=”emaildownloadlink” popupid=”popup29″ ]
  3. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex. Self MW, Peters JC, Possel JK, Reithler J, Goebel R, Ris P, Jeurissen D, Reddy L, Claus S, Baayen JC, Roelfsema PR. PLoS Biol. 2016 Mar 25;14(3) [sc name=”emaildownloadlink” popupid=”popup25″ ]
  4. Texture Segregation Causes Early Figure Enhancement and Later Ground Suppression in Areas V1 and V4 of Visual Cortex. Poort J, Self MW, van Vugt B, Malkki H, Roelfsema PR. Cereb Cortex. 2016 Oct;26(10):3964-76 [sc name=”emaildownloadlink” popupid=”popup26″ ]
  5. Early Visual Cortex as a Multiscale Cognitive Blackboard. Pieter R. Roelfsema and Floris P. de Lange. Annu. Rev. Vis. Sci. 2016. 2:131–51 [sc name=”emaildownloadlink” popupid=”popup27″ ]
  6. Serial grouping of 2D-image regions with object-based attention in humans. Jeurissen D, Self MW, Roelfsema PR. Elife. 2016 Jun 13;5. [sc name=”emaildownloadlink” popupid=”popup28″ ]


  1. Belief states as a framework to explain extra-retinal influences in visual cortex. Hendrikje Nienborg; Pieter R Roelfsema. (2015) Current Opinion in Neurobiology, 32 45-52. [sc name=”emaildownloadlink” popupid=”popup30″ ]
  2. Contextual effects on perceived contrast: Figure–ground assignment and orientation contrast. Matthew W. Self, Aart Mookhoek, Nienke Tjalma and Pieter R. Roelfsema. (2015) Journal of Vision 15(2):2, 1–21.[sc name=”emaildownloadlink” popupid=”popup31″ ]
  3. Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1. Bruno Dagnino, Marie-Alice Gariel-Mathis, and Pieter R. Roelfsema. (2015) J Neurophysiol 113: 730–739. [sc name=”emaildownloadlink” popupid=”popup32″ ]
  4. How Attention Can Create Synaptic Tags for the Learning of Working Memories in Sequential TasksJaldert O. Rombouts, Sander M. Bohte, Pieter R. Roelfsema. (2015) PLOS Computational Biology, March 5;1:34 [sc name=”emaildownloadlink” popupid=”popup33″ ]
  5. Scene perception in early vision: Figure-ground organization in the lateral geniculate nucleus. Matthew W. Self and Pieter R. Roelfsema. PNAS, June 2, 2015, 112(22), 6784–6785. [sc name=”emaildownloadlink” popupid=”popup34″ ]
  6. A learning rule that explains how rewards teach attention. Jaldert O. Rombouts, Sander M. Bohte1, Julio Martinez-Trujillo, and Pieter R. Roelfsema. Visual Cognition, 2015, Vol. 23, Nos. 1–2, 179–205. [sc name=”emaildownloadlink” popupid=”popup35″ ]
  7. Methods and theories in the scientific study of consciousness. Klink, P.C., Self, M.W., Lamme, V.A., & Roelfsema, P.R. (2015). The Constitution of Phenomenal Consciousness: Towards a Science and Theory, ed. S. Miller, Advances in Consciousness Research. John Benjamins Publishing Company. [sc name=”emaildownloadlink” popupid=”popup36″ ]
  8. The Formation of Hierarchical Decisions in the Visual Cortex. Lorteije JA, Zylberberg A, Ouellette BG, De Zeeuw CI, Sigman M, Roelfsema PR. Neuron. 2015, 87(6):1344-56. [sc name=”emaildownloadlink” popupid=”popup37″ ]
  9. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks. Brosch T, Neumann H, Roelfsema PR (2015) PLoS Comput Biol 11(10): e1004489. doi:10.1371/ journal.pcbi.1004489. [sc name=”emaildownloadlink” popupid=”popup38″ ]
  10. Learning of anticipatory responses in single neurons of the human medial temporal lobe. Leila Reddy, Marlene Poncet, Matthew W. Self, Judith C. Peters, Linda Douw, Edwin van Dellen, Steven Claus, Jaap C. Reijneveld, Johannes C. Baayen & Pieter R. Roelfsema. Nat Commun. 2015 Oct 9;6:8556.[sc name=”emaildownloadlink” popupid=”popup39″ ]


  1. Simultaneous selection by object-based attention in visual and frontal cortex. Pooresmaeili A, Poort J, Roelfsema PR. (2014) Proc Natl Acad Sci U S A. 111(17):6467-6472.[sc name=”emaildownloadlink” popupid=”popup41″ ]
  2. Inhibitory Interneuron Classes Express Complementary AMPA-Receptor Patterns in Macaque Primary Visual Cortex. Roxana N. Kooijmans, Matthew W. Self, Floris G. Wouterlood, Jeroen A.M. Belien, and Pieter R. Roelfsema. (2014) J. Neurosci., 34(18):6303–6315. [sc name=”emaildownloadlink” popupid=”popup42″ ]
  3. Basic neuroscience research with nonhuman primates: a small but indispensable component of biomedical research. Roelfsema PR, Treue S. Neuron. 2014 Jun 18;82(6):1200-4. [sc name=”emaildownloadlink” popupid=”popup43″ ]
  4. Variance misperception explains illusions of confidence in simple perceptual decisions. Zylberberg A, Roelfsema PR, Sigman M. Conscious Cogn. 2014 Jun 18;27C:246-253. [sc name=”emaildownloadlink” popupid=”popup44″ ]
  5. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Timo van Kerkoerle, Matthew W. Self, Bruno Dagnino, Marie-Alice Gariel-Mathis, Jasper Poort, Chris van der Togt, and Pieter R. Roelfsema. PNAS, 2014 Oktober 7; 111(40), 14332–41. [sc name=”emaildownloadlink” popupid=”popup45″ ]
  6. Orientation-tuned surround suppression in mouse visual cortex. Self MW, Lorteije JA, Vangeneugden J, van Beest EH, Grigore ME, Levelt CN, Heimel JA, Roelfsema PR. J Neurosci. 2014 Jul 9;34(28):9290-304. [sc name=”emaildownloadlink” popupid=”popup46″ ]
  7. A Growth-Cone Model for the Spread of Object-Based Attention during Contour Grouping. Arezoo Pooresmaeili and Pieter R. Roelfsema. Current Biology 24, 2869–2877, December 15, 2014. [sc name=”emaildownloadlink” popupid=”popup40″ ]


  1. A unified selection signal for attention and reward in primary visual cortex. Liviu Stanisor, Chris van der Togt, Cyriel M. A. Pennartz, and Pieter R. Roelfsema. (2013) PNAS, 110(22):9136-41. [sc name=”emaildownloadlink” popupid=”popup47″ ]
  2. Luminance contrast has little influence on the spread of object-based attention. Poppy Watson, Ilia Korjoukov, Devavrat Vartak, Pieter R. Roelfsema. (2013) Vision Research 85, 90–1031. [sc name=”emaildownloadlink” popupid=”popup48″ ]
  3. Surface reconstruction, figure-ground modulation, and border-ownership. Danique Jeurissen, Matthew W. Self, Pieter R. Roelfsema (2013):, Cognitive Neuroscience, 4:1, 50-52. [sc name=”emaildownloadlink” popupid=”popup49″ ]
  4. A neuronal device for the control of multi-step computations. A Zylberberg, L Paz, P R Roelfsema, S Dehaene, M Sigman. Papers in Physics 5, 050006 (2013) [sc name=”emaildownloadlink” popupid=”popup50″ ] [SUPPL] [sc name=”emaildownloadlink” popupid=”popup51″ ]
  5. Distinct Roles of the Cortical Layers of Area V1 in Figure-Ground Segregation. Self MW, van Kerkoerle T, Supèr H, Roelfsema PR. Curr Biol. 2013 (13)01129-9.[sc name=”emaildownloadlink” popupid=”popup52″ ] [SUPPL] [sc name=”emaildownloadlink” popupid=”popup53″ ] [COMMENTARY] [sc name=”emaildownloadlink” popupid=”popup54″ ]


  1. The Role of Attention in Figure-Ground Segregation in Areas V1 and V4 of the Visual Cortex. Jasper Poort, Florian Raudies, Aurel Wannig, Victor A.F. Lamme, Heiko Neumann, and Pieter R. Roelfsema. Neuron 75, 143–156. [PDF]
  2. Different glutamate receptors convey feedforward and recurrent processing in macaque V1. Self MW, Kooijmans RN, Supèr H, Lamme VA, Roelfsema PR. Proc Natl Acad Sci U S A. 109(27) : 11031-6. Epub 2012 May 21. [PDF]
  3. Q&A Interview with pieter Roelfsema [PDF]
  4. Optogenetics: Eye Movements at Light Speed. Self MW, Roelfsema PR. Curr Biol. 22(18):R804-6.
  5. Frontal eye field microstimulation induces task-dependent gamma oscillations in the lateral intraparietal area. Premereur E, Vanduffel W, Roelfsema PR, Janssen P. J Neurophysiol. 108(5):1392-402. Epub 2012 Jun 6. [PDF]
  6. Decision Making during the Psychological Refractory Period. Zylberberg A, Ouellette B, Sigman M, Roelfsema PR. Curr Biol. 22(19):1795-9.
  7. Task-Relevant and Accessory Items in Working Memory Have Opposite Effects on Activity in Extrastriate Cortex. Peters JC, Roelfsema PR, Goebel R. J Neurosci. 32(47):17003-17011. [PDF]
  8. The time course of perceptual grouping in natural scenes. Korjoukov I, Jeurissen D, Kloosterman NA, Verhoeven JE, Scholte HS, Roelfsema PR. Psychol Sci. 23(12):1482-9. [PDF]


  1. Different states in visual working memory: when it guides attention and when it does not. Christian N.L. Olivers, Judith Peters, Roos Houtkamp and Pieter R. Roelfsema. Trends in Cognitive Sciences, Vol. 15, No. 7; 327-334. [PDF]
  2. Attention-Voluntary Control of Brain Cells. Pieter R. Roelfsema. Science. Vol.332: 1512-1513. [PDF]
  3. Automatic spread of attentional response modulation along Gestalt criteria in primary visual cortex. Aurel Wannig, Liviu Stanisor and Pieter R Roelfsema. Nature Neuroscience. 14(10)1243:1244. [PDF]
  4. The human Turing machine: a neural framework for mental programs. Ariel Zylberberg, Stanislas Dehaene, Pieter R. Roelfsema and Mariano Sigman. Trends in Cognitive Sciences, Vol. 15, No. 7, 293:300 [PDF]
  5. Incremental grouping of image elements in vision. Pieter R. Roelfsema & Roos Houtkamp. Atten Percept Psychophys 73:2542–2572 [PDF]
  6. Surfing the attentional waves during visual curve tracing: Evidence from the sustained posterior contralateral negativity. Christine Lefebvre, Roberto Dell’Acqua, Pieter R. Roelfsema, and Pierre Jolicoeur. Psychophysiology, 48, 1509–1515. [PDF]


  1. Perceptual learning rules based on reinforcers and attention. Pieter R. Roelfsema Arjen van Ooyen and Takeo Watanabe, Trends in Cognitive Sciences 14(2):64-71. [PDF]
  2. Further evidence for the spread of attention during contour grouping: A reply to Crundall, Dewhurst, and Underwood Pieter R. Roelfsema, Roos Houtkamp, Ilia Korjoukov. Attention, Perception, & Psychophysics 72(3): 849-862 [PDF]
  3. A monocular, unconscious form of visual attention. Matthew W. Self and Pieter R. Roelfsema. Journal of Vision 10(4):17, 1-22 [PDF]
  4. The Brain’s Router: A Cortical Network Model of Serial Processing in the Primate Brain. Zylberberg A, Fernandez Slezak D, Roelfsema PR, Dehaene S, Sigman M (2010) PLoS Comput Biol 6(4): e1000765. [PDF]
  5. Separable Codes for Attention and Luminance Contrast in the Primary Visual Cortex. Arezoo Pooresmaeili, Jasper Poort, Alexander Thiele, and Pieter R. Roelfsema J. Neurosci. 2010;30 12701-12711. [PDF]
  6. Suppressive Lateral Interactions at Parafoveal Representations in Primary Visual Cortex. Arezoo Pooresmaeili, Jose L. Herrero, Matthew W. Self, Pieter R. Roelfsema, and Alexander Thiele. J. Neurosci. 2010;30 12745-12758 [PDF]
  7. Neuronal Activity in the Visual Cortex Reveals the Temporal Order of Cognitive Operations. Moro SI, Tolboom M, Khayat PS, Roelfsema PR. J Neurosci. 2010; 30(48):16293-16303. [PDF]
  8. Parallel and serial grouping of image elements in visual perception. Houtkamp R, Roelfsema PR. J Exp Psychol Hum Percept Perform. 2010 Dec;36(6):1443-59. [PDF]


  1. Time course of attentional modulation in the frontal eye field during curve tracing. Khayat PS, Pooresmaeili A, Roelfsema PR. J Neurophysiol. (2009) 101:1813-22. [PDF]
  2. Matching of visual input to only one item at any one time. Houtkamp R, Roelfsema PR. Psychol Res. (2009) 73:317-26. [PDF]
  3. Remembered but Unused: The Accessory Items in Working Memory that Do Not Guide Attention. Judith Peters, Rainer Goebel, and Pieter Roelfsema. J. Cogn. Neurosc. (2009) 21(6):1081–1091 [PDF]
  4. Noise Correlations Have Little Influence on the Coding of Selective Attention in Area V1. Jasper Poort and Pieter R. Roelfsema. Cereb Cortex, (2009) 19(3):543-53. Epub 2008 Jun 13. [PDF]
  5. Location and color biases have different influences on selective attention. Jillian H. Fecteau , Ilia Korjoukov a, Pieter R. Roelfsema. Vision Research (2009) 49:996-1005 [PDF]
  6. Additive Effects of Attention and Stimulus Contrast in Primary Visual Cortex. Alexander Thiele, Arezoo Pooresmaeili, Louise S. Delicato, Jose L. Herrero and Pieter R. Roelfsema Cerebral Cortex (2009) 19:2970-2981 [PDF]
  7. Modulation of the Contrast Response Function by Electrical Microstimulation of the Macaque Frontal Eye Field. Leeland B. Ekstrom, Pieter R. Roelfsema, John T. Arsenault, Hauke Kolster, and Wim Vanduffel J.Neuroscience (2009) 29(34):10683–10694. [PDF]


  1. Bottom-Up Dependent Gating of Frontal Signals in Early Visual Cortex. Leeland B. Ekstrom, Pieter R. Roelfsema, John T. Arsenault, Giorgio Bonmassar, Wim Van duffel. Science 321, 424-417(2008) [PDF]


  1. Interactions between higher and lower visual areas improve shape selectivity of higher level neurons -Explaining crowding phenomena. Janneke F.M. Jehee, Pieter R. Roelfsema, Gustavo Deco, Jaap M.J. Murre, Victor A.F. Lamme. Brain Res. 1157, 167-176 (2007) [PDF]
  2. Boundary assignment in a recurrent network architecture. Janneke F.M. Jehee, Victor A.F. Lamme, Pieter R. Roelfsema. Vision Res. 47, 1153–1165 (2007) [PDF]
  3. Different Processing Phases for Features, Figures, and Selective Attention in the Primary Visual Cortex. Pieter R. Roelfsema, Michiel Tolboom, and Paul S. Khayat. Neuron 56, 785–792, (2007) [PDF]
    Supplemental Data [PDF]
    Commentary: Early Vision Is Early in Time. Robert Shapley. Neuron 56, 765-766 (2007) [PDF]
  4. A field of dreams Inner Presence: Consciousness as a Biological Phenomenon by Antti Revonsuo. Book review by: Matthew W. Self and Pieter R. Roelfsema. TRENDS in Cognitive Sciences 11(1), 6-7 [PDF]


  1. Synchrony dynamics in monkey V1 predict success in visual detection. Chris van der Togt, Stiliyan Kalitzin, Henk Spekreijse, Victor A.F. Lamme and Hans Supèr. Cereb Cortex. 2006 Jan;16(1):136-48. Epub 2005 Apr 20. [PDF]
  2. Attention lights up new object representations before the old ones fade away. Khayat PS, Spekreijse H, Roelfsema PR. J Neurosci. 2006 Jan 4;26(1):138-42. [PDF]
  3. The effect of Items in working memory on the deployment of attention and the eyes during visual search. Houtkamp, R., Roelfsema, P.R. (2006) J. Exp. Psych: Human Perception and Performance 2006, Vol. 32, No. 2, 423-442. [PDF]
  4. Cortical algorithms for perceptual grouping. Pieter R. Roelfsema (2006) Annu. Rev. Neurosci. 29:203-227. [PDF]


  1. Chronic multi-unit recordings in behaving animals: advantages and limitations. Hans Supèr, and Pieter R. Roelfsema (2005) Prog. Brain Res., 147, 263-282. [PDF]
  2. Elemental operations in vision. Roelfsema PR. (2005) Trends Cogn Sci. 9(5):226-33.
  3. Neural responses in cat visual cortex reflect state changes in correlated activity. Chris van der Togt, Henk Spekreijse, Hans Supèr. (2005) Eur. J. Neurosci. 22(2):465-75. [PDF]
  4. Attention-gated reinforcement learning of internal representations for classification. Roelfsema PR, van Ooyen A. (2005) Neural Comput. 17(10):2176-214.[PDF]


  1. Synchrony and covariation of firing primary visual cortex during contour grouping. Pieter R Roelfsema, Victor A F Lamme & Henk Spekreijse (2004) Nat. Neurosci. 7:982-991. [PDF]
  2. Correlates of transsaccadic integration in the primary visual cortex of the monkey. Paul S. Khayat, Henk Spekreijse, and Pieter R. Roelfsema (2004) PNAS 101:12712–12717 [PDF]
  3. Visual information transfer across eye movements in the monkey. Paul S. Khayat, Henk Spekreijse, and Pieter R. Roelfsema (2004) Vision Research 44:2901–2917 [PDF]
  4. Correspondence of presaccadic activity in the monkey primary visual cortex with saccadic eye movements. Hans Supèr, Chris van der Togt, Henk Spekreijse, and Victor A.F.Lamme (2004) PNAS, March 2, 101(9) 3230-3235 [PDF]
  5. The Integration of Colour and Motion by the Human Visual Brain. Matthew W. Self and S. Zeki Cerebral Cortex Advance Access published on December 22, 2004. [PDF]


  1. Internal State of Monkey Primary Visual Cortex (V1) Predicts Figure–Ground Perception. Supèr, H., van der Togt, C., Spekreijse, H. & Lamme, V. A. F. (2003) J. Neuroscience, 23:3407–3414 [PDF]
  2. Subtask sequencing in the primary visual cortex. Roelfsema, P.R., Khayat, P.S. & Spekreijse, H. (2003) Proceedings of the National Academy of Sciences USA, 100, 5467-5472. [PDF]
  3. Working memory in the primary visual cortex. Supèr, H. (2003) Archives of Neurology 60: 809-812.
  4. Figure-ground activity in primary visual cortex (V1) of the monkey matches the speed of behavioral response. Supèr, H., Spekreijse, H., Lamme, V.A.F. (2003) Neurosci. Letters 344, 75-78.
  5. Why do schizophrenic patients hallucinate? Roelfsema, P.R., Supèr, H. (2003) Brain Behavioral Science (in press).
  6. A gradual spread of attention during mental curve tracing. Houtkamp,R., Spekreijse, H., Roelfsema, P.R. (2003) Perception & Psychophysics, 65 (7), 1136-1144 [PDF]


  1. Oscillatory neuronal synchronization in primary visual cortex as a correlate of perceptual stimulus selection. Fries, P., Schröder, J.-H., Singer, W., Roelfsema, P.R., Engel, A.K. (2002) J. Neurosci., 22, 3739-3754. [PDF]
  2. Do neurons predict the future? Roelfsema, P.R. (2002) Science, 295, 227. [PDF]
  3. Figure-ground segregation in a recurrent network architecture. Roelfsema, P.R., Lamme, V.A.F., Spekreijse, H. & Bosch, H. (2002) Journal of Cognitive Neuroscience, 14, 525-537. [PDF]
  4. Ocular dominance in extrastriate cortex of strabismic amblyopic cats. Schröder, J.-H., Fries,P., Roelfsema, P.R., Singer, W., Engel, A.K. (2002). Vision Res., 42, 29-39. [PDF]
  5. Cognitive functions in the primary visual cortex; from perception to memory. Supèr, H. (2002) Review in the Neurosciences, 13:287-298.
  6. Masking interrupts figure-ground signals in V1. Lamme VA, Zipser K, Spekreijse H. J Cogn Neurosci. 2002 Oct 1;14(7):1044-53. [PDF]


  1. Which brain mechanism cannot count beyond four? Roelfsema, P.R. & Lamme, V.A.F. (2001) Behavioral & Brain Sciences, 24, 142-143.
  2. The representation of erroneously perceived stimuli in the primary visual cortex. Roelfsema, P.R. & Spekreijse, H. (2001) Neuron 31, 853-863. [PDF]
  3. The spatial profile of visual attention in mental curve tracing. Scholte, H.S., Spekreijse, H. & Roelfsema, P.R. (2001) Vision Research, 41, 2569-2580. [PDF]
  4. A neural correlate of working memory in the monkey primary visual cortex. Super, H., Spekreijse, H. & Lamme, V.A. Science. (2001) 293, 120-4. [PDF]
  5. Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Supèr, H., Spekreijse, H. & Lamme, V.A. Nat. Neurosci. (2001) 4, 304-10. [PDF]


  1. The effects of pair-wise and higher order correlations on the firing rate of a post-synaptic neuron. Bohte, S., Spekreijse, H. & Roelfsema, P.R. (2000) Neural Computation, 12, 153-179. [PDF]
  2. The role of primary visual cortex (V1) in visual awareness. Lamme, V.A.F., Supèr, H., Landman, R., Roelfsema, P.R. & Spekreijse, H. (2000) Vision Research,40, 1507-1521.
  3. The distinct modes of vision offered by feedforward and recurrent processing. Lamme, V.A.F. & Roelfsema, P.R. (2000) Trends in Neuroscience, 23, 571-579. [PDF]
  4. The implementation of visual routines. Roelfsema, P.R., Lamme, V.A.F. & Spekreijse, H. (2000) Vision Research, 40, 1385-1411. [PDF]


  1. Temporal constraints on the grouping of contour segments into spatially extended objects. Roelfsema, P.R., Scholte, S. & Spekreijse, H. (1999) Vision Research, 39, 1509-1529. [PDF]
  2. Algorithms for the detection of connectedness and their neural implementation. Roelfsema, P.R., Bohte, S. & Spekreijse, H. (1999) In: Burdet, G., Combe, P. & Parodi,O. (Eds.) Neuronal Information Processing: From Biological Data to Modelling and Applications. Series in Mathematical Biology and Medicine, Vol. 7. Singapore: World Scientific[PDF]


  1. Detecting connectedness. Roelfsema, P.R. & Singer, W. (1998) Cerebral Cortex, 8, 385-396.
  2. Solutions for the binding problem. Roelfsema, P.R. (1998) Zeitschrift für Naturforschung C, 53, 691-715.
  3. Object-based attention in the primary visual cortex of the macaque monkey. Roelfsema, P.R., Lamme, V.A.F. & Spekreijse, H. (1998) Nature, 395, 376-381. [PDF]
  4. Functional connectivity within the visual cortex of the rat shows state changes. van der Togt, C., Lamme, V.A.F. & Spekreijse, H. (1998) Eur.J.Neuroscience, 10:1490-1507.[PDF]
  5. Characterization of a directional selective inhibitory input from the medial terminal nucleus to the pretectal nuclear complex in the rat. Schmidt, M., van der Togt, C., Wahle, P., Hoffmann, K.P. (1998) Eur. J. Neurosci. 10:1533-43.
  6. Feedforward, horizontal, and feedback interactions in visual cortical processing. Lamme, V.A.F., Supèr, H., Spekreijse, H. (1998) Current Opinions in Neurobiology 8:529-535.


  1. Role of temporal domain for response selection and perceptual binding. Engel, A.K., Roelfsema, P.R., Fries, P., Brecht, M. & Singer, W. (1997) Cerebral Cortex, 7, 571-582.
  2. Binding and response selection in the temporal domain – a new paradigm for neurobiological research. Engel, A.K., Roelfsema, P.R., Fries, P., Brecht, M., Singer, W. (1997). Theory in Biosciences, 116, 241-266.
  3. Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Fries, P., Roelfsema, P.R., Engel, A. K., König, P. & Singer, W. (1997) Proceedings of the National Academy of Sciences USA, 94, 12699-12704. [PDF]
  4. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Roelfsema, P.R., Engel, A.K., König, P. & Singer, W. (1997) Nature, 385, 157-161.
  5. Neuronal assemblies: necessity, significance, and detectability. Singer, W., Engel, A.K., Kreiter, A.K., Munk, M.H.J., Neuenschwander, S. & Roelfsema, P.R. (1997) Trends in Cognitive Sciences, 1, 252-261.[PDF]


  1. The role of neuronal synchronization in response selection: a biologically plausible theory of structured representations in the visual cortex, Journal of Cognitive Neuroscience, 8, 603-625. Roelfsema, P.R., Engel, A.K., König, P. & Singer, W. (1996)
  2. Role of reticular activation in the modulation of intracortical synchronization. Munk, M.H.J., Roelfsema, P.R., König, P., Engel, A.K., & Singer, W. (1996) Science, 272, 271-274.
  3. Precise timing of neuronal discharges within and across cortical areas: Implications for synaptic transmission. Singer, W., Kreiter, A.K., Engel, A.K., Fries, P., Roelfsema, P.R. & Volgushev, M.(1996) Journal of Physiology (Paris), 90, 221-222


  1. Inhibition of neuronal activity in the nucleus of the optic tract due to electrical stimulation of the medial terminal nucleus in the rat. van der Togt, C., Schmidt, M. (1994) Eur. J. Neurosci. 6:558-64.
  2. The contribution of GABA-mediated inhibition to response properties of neurons in the nucleus of the optic tract in the rat. Schmidt, M., Lewald, J., van der Togt, C., Hoffmann, K.P. (1994) Eur. J. Neurosci. 6:1656-61.


  1. GABAergic neurons and circuits in the pretectal nuclei and the accessory optic system of mammals. van der Want, J.J., Nunes Cardozo. J.J., van der Togt, C. (1992) Prog. Brain Res. 90:283-305. Review.
  2. Variation in form and axonal termination in the nucleus of the optic tract of the rat: the medial terminal nucleus input on neurons projecting to the inferior olive. van der Togt, C., van der Want, J. (1992) J. Comp. Neurol. 325:446-61.


  1. Medial terminal nucleus terminals in the nucleus of the optic tract contain GABA: an electron microscopical study with immunocytochemical double labeling of GABA and PHA-L. van der Togt, C., Nunes Cardozo, B., van der Want, J. (1991) J. Comp. Neurol. 312:231-41.v


At the moment, there are no vacancies within this group

Show all vacancies
Logo shape right


Have a question? Ask it directly to the Roelfsema

"*" indicates required fields


Donate to NiN

"*" indicates required fields

1Step 1: your donation
2Step 2: your details
Amount (most people donate 25 euros per quarter)*

Brain Friends make groundbreaking brain research possible

  • You support groundbreaking/ innovative brain research
  • You support the Dutch Brain Bank
  • Invitation to the Brain Friends Lecture
  • Exclusive friend activities
  • A look behind the scenes of the Netherlands Institute for Neuroscience
You can easily donate via

You can also transfer your contribution to NL76 INGB 0002 1673 78 in the name of ‘Stichting Vrienden van het Herseninstituut’

Support our work!

The Friends Foundation facilitates groundbreaking brain research. You can help us with that.

Support our work