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Abstract

The earliest studies on ‘disability glare’ date from the early
20th century. The condition was defined as the negative
effect on visual function of a bright light located at some
distance in the visual field. It was found that for larger
angles (>1degree) the functional effect corresponded pre-
cisely to the effect of a light with a luminosity equal to
that of the light that is perceived spreading around such a
bright source. This perceived spreading of light was called
straylight and by international standard disability glare
was defined as identical to straylight. The phenomenon
was recognized in the ophthalmological community as an
important aspect of the quality of vision and attempts were
made to design instruments to measure it. This must not
be confused with instruments that assess light spread-
ing over small distances (<1 degree), as originating from
(higher order) aberrations and defocus. In recent years
a new instrument has gained acceptance (C-Quant) for
objective and controllable assessment of straylight in the
clinical setting. This overview provides a sketch of the his-
torical development of straylight measurement, as well as
the results of studies on the origins of straylight (or disabil-

Geschichte der Messung des okularen
Streulichts: Eine Übersicht

Zusammenfassung

Am Anfang des 20. Jahrhunderts wurden umfang-
reiche Untersuchungen zur ,,physiologischen Blendung“
durchgeführt, definiert als die Beeinträchtigung des Sehens
durch eine helle Lichtquelle, die in einem bestimmten
Abstand innerhalb des Gesichtsfelds gelegen ist. Es wurde
herausgefunden, dass für größere Winkel (>1Grad) der
Funktionseffekt genau dem Effekt eines Lichtes mit einer
Helligkeit entsprach, die der des Lichtes gleich ist, das
als um eine solche helle Quelle herum sich ausbrei-
tend wahrgenommen wird. Dieses um eine Lichtquelle
herum wahrgenommene Licht wurde Streulicht genannt
und als internationaler Standard wurde die physiologi-
sche Blendung als identisch zum Streulicht definiert. Das
Phänomen wurde in der ophthalmologischen Gemein-
schaft als wichtiger Aspekt der Qualität des Sehens erkannt
und es wurde versucht, Instrumente zu entwerfen, um sie
zu messen. Die Instrumente zur Streulichtmessung dür-
fen nicht mit solchen Instrumenten verwechselt werden,
ity glare) in the normal eye, and on findings on cataract
(surgery) and corneal conditions.

die sich in kleinem Winkel (<1 Grad) ausbreitendes Licht
messen, welches durch Aberrationen (höherer Ordnung)
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und Defokussierung entsteht. Seit einigen Jahren gibt es
ein Instrument (C-Quant) zur objektiven und kontrollier-
baren Bestimmung von okularem Streulicht in der Klinik.
In diesem Überblick werden die historische Entwicklung
der Messung des okularen Streulichts, der Untersuchun-
gen zum Ursprung von Streulicht (oder physiologischer
Blendung) im normalen Auge sowie die Ergebnisse für
Katarakte (Chirurgie) und Korneakonditionen skizziert.

Schlüsselwörter: Streulicht, physiologische Blendung,
greller Glanz, intraokulare Lichtstreuung, Qualität des
Sehens, Kontrastempfindlichkeit

I Introduction

This paper provides an overview of the developments in the
field of glare and straylight measurement that led to the recent
insights in straylight and its measurement, using compensa-
tion techniques. As early as the first half of the 20th century,
studies were carried out that have led to the since then gener-
ally accepted view that disability glare can be fully understood
on the basis of the optical phenomenon of light scattering in
the eye, leading to a veil of light at the retina. Consequently,
the CIE (Commission Internationale de l’Eclairage) defined
disability glare as straylight. Both are quantified by means of
the psychophysically measurable value Leq/Ebl [1,2] (detailed
below), used as the basis of present day straylight assessment
[3]. The commercial C-Quant straylight meter is the latest
step in the development of these techniques. To be precise,
straylight is a functional measure. It is a measure for what
is seen (the intensity of light spreading). It is not directly a
measurement of retinal light levels, but closely linked. The
CIE also developed the Standard Glare Observer [4]. Today
it is realized that ocular straylight constitutes a visual handi-
cap of a much more general nature than glare alone. Patient
complaints may include problems of “hazy vision”, contrast
and color loss, difficulty with face recognition when looking
against the light, halos around bright lights, etc. Straylight also
adversely affects visual function tests, such as contrast sen-
sitivity [5], visual field [6–8], and pattern electroretinogram
(PERG) [9]. Since the development of a clinical straylight
instrument was unsuccessful for a long time, dozens of glare
testers have been defined as alternatives. These instruments
do not assess straylight or disability glare, but a more or
less related score [10,11]. It has also been proposed to assess
straylight with a double pass technique using infrared light
[12], but this is not correct [13,14]. However, a current study,

scattering - with their advantages and disadvantages, please
see Pinero et al. [16].

Basic Principles

Since the beginning of the 20th century, the importance of
straylight for visual function has been recognized by many
investigators. Cobb [17] introduced the concept of “equiva-
lent veiling luminance” (Leq) as an apt way to define straylight
(see section Direct Compensation below and Figure 1 for
details). Disability glare/straylight, as defined by the CIE, is
now quantified by means of this equivalent luminance, i.e.
the (external) luminance that has the same visual effect as the
glare source at some angular distance [1]. Holladay [18] and
Stiles [19] applied this concept to their measurements and
formulated a disability glare formula that was widely used.
Nowadays, straylight can also be defined as the outer skirt
of the point spread function (PSF) [4,20–22], outside approx.
1◦, although straylight is defined in a functional sense by Leq,
since it defines what is perceived. It is generally accepted that
it corresponds closely to optics based on much earlier study [1]
and recent verification [23]. Straylight corresponds to a veil-
ing luminance over the whole retina that adds to the retinal
projection of the visual scene, thereby reducing the contrast
of the retinal image.

The first attempts to measure ocular straylight by means of
equivalent luminance involved two types of threshold mea-
surements: thresholds in the presence of a distant glare source
and thresholds in the presence of a homogeneous background
luminance. From such a series of measurements the equiv-
alent luminance could be derived, defined as the luminance
yielding identical thresholds as the glare source (equivalent
veil method) [1]. This method was laborious and therefore
unsuitable in practice, such as for clinical applications or
using visible light and other improvements, shows promising
results [15]. The present paper will review only approaches
that meet the CIE definition, not the glare testing approaches.
For an overview of optical techniques for measuring ocular
driver-licensing, with large variation reported between the
older studies [2]. However, the method continued to be used in
experimental applications [24,25]. Alternatives were designed
to circumvent the problem of the disproportionate amount of
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Figure 1. Basics of straylight quantification. At the top a street scene is depicted as it would be seen by an eye with normal straylight (left),
and by an eye with 4x increased straylight (right). The 3 figures at the bottom give the point-spread-function according to the CIE for average
age-best eyes. The PSF is given using 3 corresponding definitions: the normal (left), the straylight parameter s linearly (middle), and the
same logarithmically (right). The continuous line is for an average 35-year-old Caucasian eye; the dashed line is for a caucasian eye with
media turbidity increasing straylight 4x, mimicked using the CIE function for a 95-year-old. At the top right the stimulus lay-out is shown

as used in the C-Quant.

measurements [26–32], which led to a discussion of matters
of validity [11,33–35]. The alternative method of Paulsson
and Sjöstrand (P&S) was used particularly widely [27]. As
even more easy-to-use alternatives, so-called ‘glare testers’
were introduced, usually consisting of a visual acuity (e.g.,
ETDRS [36–38], Ferris-Bailey [39], Bailey-Lovie [40,41], or
Regan [40] charts) or contrast sensitivity (e.g., sinusoidal grat-
ings [36,40,42–44], Landolt rings [36,45–48], or Pelli-Robson
charts [32,39,40]) test, with and without a glare source pre-
sented at some angular distance in the visual field. Some

studies utilized a laboratory setup based on the same prin-
ciples, with visual field stimuli [49–51], a flashing test field
[52], sinusoidal gratings [53], or low contrast letters [54] as tar-
gets, and also for specific nighttime conditions [55]. Although
occasionally glare testers got favorable reviews [40], more
often they yielded unreliable results, with outcomes that did
not correlate well with various validity measures, such as out-
door visual acuity in bright sunlight [36,44], a questionnaire
assessing perceived visual disability [39,45], or directly mea-
sured forward light scatter [40,45]. Also, the repeatability and
discriminative ability of the glare tests studied were found to
be inadequate [40,45,56,57]. The glare test data were omitted
from the final results of the large multicenter PERK study [58],
because the glare tester was not sufficiently sensitive to detect

small but significant amounts of light scattering [40,59,60]. As
a result of all these issues, a standard glare measurement test
was never adopted, and papers discussing glare test problems
appeared [10,11,61–64].
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Direct Compensation Method

To improve this situation, a new psychophysical method
was designed, called the Direct Compensation method [5].
In short, this method works as follows: A bright ring-shaped
flickering light source around a (dark) test field is presented.
Due to intraocular scatter, part of the light from the bright ring-
shaped source will be projected on the retina at the location
of the test field, inducing a (weak) flicker in the test field. To
determine the exact amount of straylight, a variable amount of
counterphase compensation light is presented in the test field.
By adjusting the amount of compensation light, the flicker
perception in the test field can be extinguished. In this way,
the straylight modulation caused by light scattered from the
glare source is “directly compensated for”.

In 1990, the Direct Compensation (DC) technique was
implemented into a small portable device, called the Straylight
Meter, as a service to other researchers [3,65,66]. This led
to publications, notably by the groups of Elliott, Kooijman,
Schallhorn and Alexander, on a variety of subjects. Moreover,
some research groups conceived (slightly) modified DC
versions. [67–73]. The first publications about the Direct
Compensation method appeared in 1986/1987 [5,74]. Since
then, many studies on ocular straylight have been published
using this approach, such as on normal population aging
effects [75,76], on the use of red (yellow) glasses [77], on
diaphany of the ocular wall [78,79], on the effects of ocular
pigmentation differences [80], on populations with different
kinds of cataracts [42], etc.

The unit for quantifying straylight in these studies is
explained in Figure 1. The top left image of a street scene
illustrates how straylight presents itself most clearly, as light
spreading from a bright source. Depending on the strength
of the source and the condition of the eye, the spread of the
light obviates proper vision of other objects. To the right the
same scene is illustrated for an eye with media turbidity. The
essential feature of the spreading light is its brightness. The
photometric unit to quantify brightness of normal objects is
luminance in cd/m2. So to precisely define the strength of
the straylight, one would want to assess its luminance value.
However, the brightness seen is not actually there, so it can-
not be measured by a photometric instrument. As mentioned
above, Cobb [17] introduced the concept of equivalent lumi-
nance Leq, i.e. the luminance that is visually identical. By this
definition, the obtained value is very meaningful as it can be
used to derive, e.g., the loss of contrast suffered in the street
scene. Leq depends both on the strength of the light source
and on the eye. If Leq is divided by the illuminance Ebl in
lm/m2 caused by the light source on the eye, a quantity is
obtained that only depends on the condition of the eye, inde-
pendent of the light source. Moreover, it integrates to unity,

which is the proper way of normalization of the point-spread-
function PSF. The PSF is defined as the way a certain (unit)
amount of light is redistributed. The lower left graph gives the
PSF according to the CIE age standard [4]. The continuous
ed. Phys. 23 (2013) 6–20 9

line is for 35 years of age. The dashed line is for 95 years of
age, serving as model for media turbidity with 4x increased
straylight. The PSF declines strongly with angle θ, and resem-
bles s/θ2 for a large part. This was also found to be true for
media disturbances such as cataract, including normal lens
aging [20], corneal pathologies [81], and haze from refractive
surgery [82]. The middle graph in Figure 1 illustrates this by
multiplication of the same curves with θ2. So, for most prac-
tical applications one parameter suffices, called the straylight
parameter s, defined by:

straylight parameter s = θ2 · Leq/Ebl = θ2 · PSF.

Using this parameter has several advantages, in particular
to make differences more clear [20]. For a precise comparison
between the different studies, the angle at which s is measured
should be specified. Normally, s is given logarithmically, as
log(s), which is comparable to giving visual acuity as log-
MAR. See the right graph at the bottom of Figure 1. Normal
values are around log(s) = 0.9, but with lens aging and other
conditions log(s) values as high as 2.5 (40x) are found.

II Compensation Comparison method

In general, the Direct Compensation method has given
a boost to the study of ocular straylight. Moreover, it was
emphasized in the literature that this technique offers much
greater sensitivity than glare tests, for example in patients
with corneal edema [83] and posterior capsular opacification
[84]. It was also used as a gold standard to assess the validity
of glare tests [40]. However, outside the laboratory it some-
times proved to be a difficult technique [84,85], but which
was nevertheless favored in a recent study where straylight
was measured in keratoconus patients [86]. In a field study
involving 112 subjects drawn from the patients and visitors of
the outpatient departments of three clinics, the standard devi-
ations of differences between repeated measurements found
in such a field study were 0.15 and 0.18 log units, for two dif-
ferent implementations of the Direct Compensation method
[45,56,57]. It appeared that the method has some important
drawbacks for routine clinical or large-scale use. It was not
patient-friendly, and there was no control over an individual’s
measurement reliability. As a result the use of the straylight
meter remained limited in its use. For large scale use, such
as clinical diagnosis or occupational health testing, the test
must be easy to understand, easy and quick to perform, easy
to explain, and fraud resistant. Also it must be criterion-
independent, so that the values have universal validity and
allow comparison of results from different locations.

A new psychophysical approach was defined in 2003,
called Compensation Comparison (CC). It was patented [87]
and implemented in a commercial instrument, dedicated to

straylight measurement, by the German company Oculus
Optikgeräte GmbH (Wetzlar, Germany)’, called C-Quant. In
the C-Quant the straylight source is an annulus (Figure 1
top right) with a radius of 5 to 10 degrees, resulting in an
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effective average angular value of 7 degrees [20]. The essential
difference was that this new approach is suitable for ran-
dom subjects and for routine clinical use. Moreover, the new
approach enabled control over the reliability of the assess-
ment. It was no longer possible to influence the measurement
outcome, and quality control factors could be defined. A large
study took place from 2003 to 2004. More than 2400 sub-
jects were measured in 5 centers in Europe (Amsterdam,
Barcelona, Tübingen, Salzburg and Antwerp) [88–93] and a
reference database was established. The measurement values
closely corresponded to those found in the earlier studies. An
important conclusion was that high levels of straylight are
found frequently in the population, even in individuals with
decimal visual acuity = 1.0 or better. The amount of increase
is often considerable. If one realizes that glare hindrance is
already a problem for young eyes, it is clear that a straylight
increase by a factor of 4 constitutes a serious handicap. Yet
such an increase was often found [89]. Usually, straylight is
quantified by means of the so-called straylight parameter s,
defined above, and given logarithmically as log(s) (compare
logMAR). With normal values around log(s) = 0.9, as crite-
rion values for driving 1.5 (4x), for pilots 1.2 (2x), and for
cataract surgery 1.4 (3x) are proposed.

In essence, the Compensation Comparison method presents
exactly the same stimuli to the subject as the Direct Compen-
sation method. Note that in the Direct Compensation method,
the amount of compensation light is varied until the stray-
light flicker has disappeared. In other words, in the Direct
Compensation method, the subject compares different stimuli
sequentially. Contrarily, in the Compensation Comparison
method, two stimuli of the Direct Compensation method are
presented to and compared by the subject simultaneously. In
this way, the Direct Compensation method is implemented as
a two alternative forced choice (2AFC) approach. The charac-
teristics of the psychometric function for this 2AFC method
have been described [94,95]. This function determines what
comparisons would be the best to use. The Compensation
Comparison method has been summarized in a 2005 ARVO
abstract [96]. A full description is given by Franssen et al.
[94] and the reliability of the method is discussed by Coppens
et al. [97,98]. Independent reliability studies with the C-Quant
were performed by Cervino et al. [99] and Guber et al. [100].
A study investigating the effect of pupil size on straylight mea-
surements found no significant effects [101]. An overview of
straylight findings using the DC and CC methods and other
approaches will be given in the following paragraphs. In all
cases either the DC or CC method is used unless stated oth-
erwise, in which case the method used will be named.

III Straylight in Normal Eyes
One of the first subjects that was studied was the age
dependence of straylight in the normal population. Earlier
studies had shown a clear increase with age [48,102], but
the variability in the results proved to be too large for an
. Med. Phys. 23 (2013) 6–20

accurate quantification of the effect. For a review, see Vos [1].
With the Direct Compensation technique, it became possible
to study straylight in larger populations with better accuracy
[76]. Straylight/disability glare increases with age A by a
factor[

1 +
(

A

D

)4
]

,

with D the age at which the amount of straylight doubles.
Values for D were found to be between about 62.5 and 70
years. This age dependence was later implemented in a more
extensive model including pigmentation as a second parame-
ter [20]. For pigmentation, the color of the iris was used, and a
grading scheme for iris color was developed[103]. The model
was further refined in a CIE Collection paper, including age
dependency formulas of different levels of complexity, appli-
cable in different angular validity domains [22]. This led to a
proposal to the CIE for a Standard Glare Observer [4], which
was accepted as CIE standard a few years later [104]. See the
appendix of the present paper for details. A large study among
European drivers was conducted, resulting in straylight preva-
lence values for such a relatively healthy population, showing
little deviation from the earlier age characteristics [88,89]. In
the C-Quant, D is set at 65. The improved accuracy enabled
detection of statistical differences in straylight between
fellow eyes, which were shown to increase with age [93].

The main topic in the CIE ’97 report [22] was the evaluation
of the classical Stiles-Holladay approximation for the angu-
lar dependence (proportionality to �-2), especially for larger
glare angles. Vos [1] had adopted the �-2 course in the large
angle domain from Stiles and Crawford’s [105] classic work.
However, van den Berg and coworkers [76,106] found evi-
dence for a more gradual fall off beyond about 10◦. Also, data
from earlier studies show deviations from the Stiles-Holladay
approximation, including data from Stiles and Crawford them-
selves [2]. The apparent controversy induced Vos and van den
Berg [22] to perform deeper analysis of large angle scattering.
The experimental controversy could be virtually eliminated
because the Stiles and Crawford data, when corrected for the
perspective narrowing of the pupil, showed roughly the same
deviating trend from �-2. Furthermore, both the large angle
dependence and the dependence on eye pigmentation could
be reasonably well understood on the basis of a significant
contribution of scattering at the ocular fundus to the straylight
veil [80]. In lightly pigmented subjects, a contribution of light
entering via the iris and sclera serves to further complete the
picture [80,101]. The convergence of experimental evidence
thus obtained, combined with the theoretical analysis, con-
firmed the reality of the upward deviations from the classic
�-2 course. The theoretical analysis then allowed extrapola-

tion into domains of glare angle and pigmentation that were
not thoroughly covered by experimental data [22].

In their population study, IJspeert et al. [76] identified pig-
mentation as a source of the variation reported regarding
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straylight in normal eyes. The straylight values of blue-eyed
caucasians were found to be 0.1-0.4 log units higher than those
of pigmented non-caucasians, depending on angle. Elliott
et al. [107] found similar results. Van den Berg et al. [80]
found that this pigmentation dependence is partly caused by
variations in transmission of light through the ocular wall.
For dark-brown eyes of pigmented individuals transmission
was found to be several orders of magnitude lower than for
blue-eyed individuals. Furthermore, the authors speculated
that variations in fundus reflectance are also partly responsible
for pigmentation dependence of straylight. Straylight was also
measured in patients with clinical forms of translucency (also
called diaphany of the iris), associated with X-linked megalo-
cornea [78], Fuchs’ heterochromic cyclitis [79], or albinism
[108]. In all cases, both straylight and eye wall translucency
were found to be significantly increased compared to healthy
subjects.

A subject that has long escaped proper understanding is the
wavelength dependence of straylight. Characterizing wave-
length dependence was felt to be important as a clue to what
processes in the eye might cause straylight. A strong wave-
length dependence would signify scatter in the optical media
to originate from particles of sizes in the same range as, or
smaller than, the wavelength of light. Since the results from
earlier (psychophysical) studies were contradictory, Wooten
and Geri [25] carefully measured wavelength dependence of
straylight for an annulus of 3-8 degrees, using a version of
the equivalent veil method summarized above. They found
no effects whatsoever over 420-650 nm. Later, also Whitaker
et al. [26], using a similar method, but with a white test target,
failed to find effects. However, van den Berg et al. [80] found
the earlier mentioned pigmentation dependence, and effects
of color dependence associated with it. For lightly pigmented
eyes red light was found to produce more straylight than green
light, for angles of 3.5 to 25.4 degrees, and the conclusion
was that, depending on pigmentation, eye-wall transmittance
and fundal reflections introduce a straylight component with
a wavelength dependence of the opposite sign to what would
be expected from small-particle scatter. They hypothesized
that one dependence might have negated the other in the ear-
lier studies. This was supported by the later finding, in vitro,
that scattering by the human eye lens indeed shows wave-
length dependence typical of small particles [109]. In vivo
verification was obtained as this conclusion proved to form
an explanation for a well-known visual phenomenon: the so-
called ciliary corona. This is the radiation of sharp needles
of light we perceive subjectively around a bright point light
source [110]. Moreover, the human cornea was concluded to
exhibit the very strongly wavelength dependent Rayleigh type
of light scattering [111], in accordance with studies on rabbit
corneas [112]. Direct evidence for the small particle type of

wavelength dependence of straylight was obtained after the
introduction of the CC-method [113].

From the previous paragraph, it may be clear that different
components contribute to straylight in the human eye. This
ed. Phys. 23 (2013) 6–20 11

had already been surmised [1], but now more quantitative
insights began to emerge. A model was formulated, which
described, for the normal human eye, all four anatomical struc-
tures contributing to straylight, namely cornea, lens, eye wall
transmittance and fundus reflectance. [20] With respect to the
contribution by the lens, in vitro studies showed quantitative
values of light scatter in the lens to correspond to values that
were expected on the basis of in vivo data [114]. However,
for in vivo measurements, the only accessible variables are
the degree of pigmentation and the age of the subject. Note
that between normal eyes significant differences in straylight
exist, and the task of the model was to explain or predict
these differences. A mathematical formula was derived to
describe differences in in vivo data on the basis of the age
and pigmentation of the subject [20].

IV Cataract

The cataract dependence of straylight was measured
in patients with cortical, nuclear, or posterior subcapsular
cataract. Straylight was shown to be increased for all three
types compared with control subjects without cataract [42].
When cataract severity in the subpopulations was equated on
the basis of visual acuity, on average the posterior subcapsu-
lar type showed the largest straylight increase, but individual
results varied considerably, more or less in accordance with
results from Elliott et al. [28] using the P&S method from the
group of Sjöstrand. Sjöstrand and coworkers had earlier stud-
ied straylight increase specifically in the posterior subcapsular
cataract group, using this method [27,30]. A common finding
is that in many patients straylight may be increased consider-
ably while visual acuity is retained, whereas in other patients
the opposite may be the case. The angular dependence was
found to be about the same for the different cataract types [42].
Van den Brom et al. [115] found similar results. The angular
dependence of the straylight increase in case of cataract was
found to be similar to the situation in normal aging, and it
was concluded that, at least with respect to straylight, cataract
can be modeled as early aging of the crystalline lens [20,116].
These data were also used as a reference in a search for light
scattering filters that could be used to simulate the straylight
characteristics of cataract [117,118]. Straylight increase due
to cataract is also an important factor for visual functioning in
the driver population. For this reason the prevalence and asso-
ciation of cataract (and pseudophakia) with visual impairment
in the driver population was investigated [91,92]. Also, in this
context the use of the C-Quant as a screening tool for straylight
in the driver population was assessed [119,120].

Straylight values (in references [121,122] using a modified
DC method) after cataract surgery were found to be signif-
icantly decreased compared to preoperative values, but still

about a factor of 2 above normal levels, which was attributed
to posterior capsule opacification (PCO) [121–123]. In a large
population study, important variation between pseudophakic
eyes was reported [89]. A comparison between monofocal
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and multifocal intraocular lenses (IOLs) using a modified DC
method yielded no significant difference [124]. Recent stud-
ies found clear [125], small [126] or no [127,128] straylight
increase in diffractive multifocals. An early in vitro study also
found a clear increase in the diffractive modality [10]. Also no
differences were found between multifocal lenses with differ-
ent optical add power [129], between spherical and aspheric
IOLs [130–132], and in a model study on monofocal add-on
IOLs [133]. A case study found a considerable increase in
straylight after multifocal IOL implant [134]. Recently dra-
matically increased straylight values were reported in IOLs
from Bausch and Lomb called “Hydroview”, due to opacifi-
cation of the IOL because of deposit formation [135], whereas
visual acuity was relatively unchanged.

In a pseudophakic group without PCO, equal levels of
straylight compared to a normal reference group were found
[136]. In studies on the straylight effects of capsulotomy, only
in case of wide capsulotomy a significant decrease in stray-
light values was found [137] (in references [138,139] using
a modified DC method). Studies on the clinical use of stray-
light measurement (in reference [140] using a modified DC
method) for cataract assessment [40,63,140,141], PCO assess-
ment [84,140,142–144], influence of capsulorhexis size on
straylight [145–147], and low vision rehabilitation [148], con-
cluded that functional severity can be properly documented
with straylight measurement, and the suggestion was made
that straylight measurements should be used as a gold standard
for clinical evaluation of cataract [40,141]. Recently the sub-
jective importance of straylight compared to visual acuity was
studied using questionnaires in patients scheduled for cataract
surgery [149]. It was found that straylight is almost equally
important as visual acuity, stressing that straylight should fea-
ture in the indication for cataract surgery [149]. The cataract
induced general reduction of sensitivity in visual field exam-
ination, in particular the blue-yellow type, was found to be
highly correlated with straylight values [150,151]. The back-
ground of straylight effects on the visual field stimulus was
discussed [6], also by the group of Wild, who use the P&S
technique [31,152–154].

Straylight was also studied in patients with retinitis pigmen-
tosa (RP). These patients frequently develop lens opacities,
most commonly posterior subcapsular cataracts (PSC), on top
of having retinal degenerative changes that are typical of RP.
Indeed, in one study a patient with still good visual acuity
was found to have increased straylight levels by about a factor
of 3 (0.5 log units) [77]. This study was intended to evaluate
the use of red glasses, which had been reported to subjec-
tively improve visual function. No positive functional effects
were found in these patients, in particular no suppression of
straylight. Alexander and coworkers found that patients with
RP or choroideremia, who had minimal or no lens opacities

by slit-lamp evaluation, also showed increased straylight lev-
els, caused, they speculated, by subclinical changes in the
PSC region of the lens as a consequence of photoreceptor cell
degeneration [155–157]. A note of clinical significance must
. Med. Phys. 23 (2013) 6–20

be made here. For patients with a retinal condition, such as
RP or macular degeneration (AMD), increased straylight is a
more serious handicap as compared to patients without a reti-
nal condition. The functional effect of straylight is a reduction
of retinal sensitivity, aggravating the condition of the RP or
AMD patients.

V Conditions increasing straylight in the
cornea

The cornea proved to be a particularly sensitive organ for
straylight increase. Elliott et al. [83] investigated the sen-
sitivity of straylight to (experimentally) hydrophilic contact
lens-induced corneal edema. On average, a 10% corneal swell-
ing induced a 50% increase in straylight. Variability in this
relationship was speculated to be due to changes in the epithe-
lium caused by the contact lens. After contact lens removal,
individual straylight values decreased linearly with time, on
a similar time scale as the decrease in corneal swelling. This
effect was also found in a later study by Fonn et al. [158]. In
earlier studies, the effect of habitual contact lens wear on stray-
light was investigated by Elliott and coworkers [107,159].
Straylight scores in established contact lens wearers were
found to be significantly higher than in age-matched non-
wearers, but did not correlate with the amount of lens deposits.
Rigid gas permeable (RGP) contact lenses were shown to
induce more straylight than hydrophilic contact lenses. How-
ever, scores from hydrophilic lens wearers after removal of
their lenses were significantly higher than results from RGP
wearers after removal of their lenses and from age-matched
non-wearers, suggesting the presence of subclinical corneal
edema in some of the wearers. Using an approximate equiva-
lent veil method, Applegate and coworkers had also found
significantly increased straylight in some hydrogel contact
lens wearers [160], but not in all [161]. Nio et al. [162] found
an increase in straylight of, on average, 0.22 log units, com-
paring contact lens wear to spectacle wear. Recently, Cerviño
et al. [163] found slightly increased straylight values in sport-
tinted contact lenses. Other authors found normal straylight
values for soft contact lens wearers and increased straylight
values for RGP contact lens wearers [164]. Although stray-
light is increased in RGP contact lens wear, the type of material
and cleaning agents used for RGP contact lenses have shown
to minimally influence the straylight outcome [165]. Ocular
lubricants were reported to have no adverse effects on stray-
light [166]. Habitual glasses were found to induce as a rule
less straylight than is already present in the eye [167].

Pathological conditions of the cornea may induce increased
light scatter, but the degree strongly depends on the type
of disease. In central crystalline dystrophy, straylight was

found to be much increased while visual acuity was relatively
well-preserved [5,81]. In posterior polymorphous dystro-
phy, straylight was not increased, even with impaired visual
acuity [81]. In macular and also lattice dystrophy, stray-
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minating in 2005 in the appearance of a clinical instrument
(C-Quant). This has raised the interest in straylight, and many
studies have appeared in recent years on basic issues as well
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light and visual acuity were affected in a similar way [81].
Using the DC method, for deep lamellar endothelial kerato-
plasty (DLEK) and penetrating keratoplasty (PK), on average
small differences were found between pre- and postoperative
straylight values [168]. Other studies investigating straylight
outcome after DSEK and PK for Fuch’s dystrophy showed a
significant improvement [169–171], also for long term follow-
up [172]. Whereas Cheng et al. showed comparable outcome
after PK and DSEK regarding straylight [169], another study
showed straylight values to be higher after DSEK than after
PK [173]. Keratoconus patients can show increased straylight
values which could not be explained by age or scarring and
is supposedly related to structural degradation of the cornea
[86].

Ever since the introduction of laser refractive surgery,
much concern has been expressed with respect to light scatter-
ing/straylight problems regarding this type of corneal surgery.
In radial keratotomy (RK), mean straylight increases by a fac-
tor of 1.4 (0.15 log units) in eyes with 4-mm sized pupils and
a factor of 2 (0.3 log units) for 8-mm sized pupils was found
[82]. These values may be considered to be functionally signif-
icant increases. Using an approximate equivalent veil method,
Applegate et al. [29] even found increases of a factor of 6 (0.8
log units). Studies on photorefractive keratectomy (PRK) pro-
vided a less clear picture of whether functionally significant
straylight increase occurs. Older studies did not show a signifi-
cant increase on average over the population [59,85,174,175],
but in some cases a significant straylight increase was found
for individual patients [85,174,176]. Newer studies on stray-
light (see [177–185], and reference [186] where a modified
DC method was used) after PRK and laser-assisted in situ ker-
atomileusis (LASIK) show a similar picture. However, more
precise measurements in larger patient groups may be needed
to investigate the prevalence of these individual increases after
PRK or LASIK. Epithelial ingrowth after LASIK occurs in 1-
20% of all cases and is a familiar complication that can cause
an increase in straylight [187]. Surprisingly, in some studies a
decrease in the average straylight value after LASIK/LASEK
[188–190] was observed. Rozema et al. collected C-Quant
data on large numbers of non-ophthalmological subjects in the
Gullstrand project, including several biometrical parameters
[191]. They found increased levels for preoperative LASIK
subjects, correlated with the myopic refractive error. Lapid
et al., too, found elevated straylight in preoperative myopes
[188]. The improvement after treatment might suggest that
ill-tolerated contact lenses are to blame for the elevated preop-
erative levels. The same is suggested for part of the straylight
reduction after phakic anterior chamber IOL implantation
[192]. In another study on anterior chamber lenses for the
correction of high myopia no significant effect on straylight
was found [193]. Recently, for “corneal refractive therapy”
(orthokeratology or corneal reshaping) it was reported that
straylight values decreased slightly but significantly during
15 days and 1 month of follow up [194].
ed. Phys. 23 (2013) 6–20 13

VI The vitreous

Floaters are present in all eyes and are known to scatter light
and should thus contribute to straylight. In normal eyes this
contribution may be small. However, an increase in floaters
may yield a significant increase in straylight. Recently, a
study quantified straylight in eyes with floaters and showed
increased straylight values [195]. Furthermore, this study
showed improvement in straylight values after vitrectomy
[195].

VII Forward and backward scatter

Straylight reflects the effects of forward light scatter in
the eye media. There are a number of methods by which
the condition of the eye media may be assessed using back-
ward light scatter. In fact, the basic ophthalmological tool
to evaluate the eye media (the slitlamp) is based on back
scatter. Other examples are Scheimpflug slit-image photogra-
phy, Lens Opacity Meter, and the lens opacities classification
system (LOCS). One may wonder whether backward light
scatter faithfully reflects the functional effect of light scatter
in the eye, which is determined by forward light scatter. To
address this question, in vitro measurements of light scatter
in human donor lenses were performed, which showed that
backward and forward light scatter are governed by different
processes [196,197]. This might explain why the correla-
tions are weak in many patient studies comparing different
measures of backward light scatter and forward light scatter
[32,42,83,107,157,176,198–200]. Also for the cornea com-
parisons between backward and forward scatter (straylight)
were made, but no relationship was found [201]. It must be
noted here that we consider forward scatter not in a very nar-
row forward direction, but over angles of more than 1◦. For
more closely forward angles (smaller than 1◦) we approach
the domain that can be captured with other techniques, such
as double-pass and wavefront-sensing approaches.

VIII Summary and outlook

Ocular straylight has been known since the early 20th cen-
tury as an important aspect of quality of vision. Its study
originated from studies on disability glare. By international
(CIE) appointment disability glare is since quantified by
means of straylight, straylight being a solid quantity, like
visual photometry, albeit assessed psychophysically. Stray-
light study in the laboratory and in the clinic has long been
hampered by the fact that the tests were laborious, and lacked
controllable reliability. This changed over the past 20 years
with the introduction of new psychophysical techniques, cul-
as clinical questions.
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Straylight is an issue also in healthy eyes. Many clinical
conditions can be viewed as aggravated forms of the normal
light scattering by different parts of the eye. The typical exam-
ple is the aging crystalline lens. Also in eyes with good visual
acuity (logMAR = <0) straylight increases with age to 2x its
young value at 65 years of age, and to 3x at 77 years. Straylight
shows pigmentation in the eye to be of functional significance.
In lightly pigmented eyes straylight is elevated as compared to
darkly pigmented eyes, because of stronger light back scatter
from the fundus, and more light transmission through the eye
wall. The cornea is in the healthy eye the 3rd important source
of straylight, but its contribution normally remains constant
through life.

In the clinic cataract formation is the most general cause
of straylight-based complaints such as hazy vision, glare hin-
drance, difficulty recognizing faces, contrast and color loss.
With respect to its straylight characteristics, cataract can be
compared to early aging. For the cataract population, sub-
jectively straylight increase is about as important as visual
acuity loss. Since straylight is impaired in many patients with
good visual acuity, much more patients would be eligible for
cataract surgery if this objective criterion would be added to
the diagnostic arsenal. Straylight can be increased in patients
with pigmentation defects, such as albino’s. Iris print contact
lenses can help to address this. Many corneal conditions exist
that can enhance straylight, in particular (Fuch’s) dystrophy,
and haze after refractive surgery, but also contact lenses were
found to increase straylight in many cases. For the Fuch’s
patients, surgery proved effective to reduce straylight.

It seems that straylight study has become of age, not only
in the laboratory, but also in the clinic. It can be expected
that the C-Quant will be accompanied by other instruments
in the future. The studies up till now have made clear that
straylight is an important issue in the clinic, but have also left
us with many intriguing questions. E.g. after cataract surgery,
one could expect straylight to return to the value of one’s
youth, or even lower (because the lens is removed), a form of
super vision. However, in absence of PCO, straylight returns

on average to log(s) = 1.1 to 1.2, values normal for a healthy
60 year old phakic eye. What causes this significant elevation
in the pseudophakic eye? And how can this be improved?
There are indications that the IOL can have an influence, such

PSF = [Leq/Egl]total = [1 − 0.08 · (A/70)4] ·
[

[1 +

[1 + 1.6 · (A/70)4] ·
{[

400

1 + (θ/0.1)2 + 3 · 10

2.5 · 10−3 · p [sr−1],
as in case of a diffractive design, and good studies into the
effects of IOLs on straylight are needed. As another example,
many different treatment modalities for presbyopia are being
researched, some involving the cornea. But the cornea is a
. Med. Phys. 23 (2013) 6–20

very sensitive organ for straylight effects, and the question is
what effects these treatment modalities have.

Straylight is part of functional quality of vision. As such it
can directly be used for justification of clinical intervention, or
for licensing applications. Since the straylight test cannot be
influenced (as opposed to e.g. visual acuity), it is objective and
robust. Moreover, the preop straylight value is predictive for
the intervention result. The important question to be resolved
here is, what criterion values must be set for the different
types of intervention. For cataract surgery one study found
a break-even point at log(s) = 1.2, and for DSEK in case of
Fuch’s another study found a break-even point at log(s) = 1.33,
but many more such studies are needed. Also for licensing
applications where glare sensitivity is an issue criteria must
be set. We have proposed a limit of log(s) = 1.5 for driver
licensing, and 1.2 for demanding professions such as pilots,
and much study is to be expected on this application.
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Appendix

CIE Standard Glare Observer

As mentioned in the introduction of this overview, the CIE
has adopted standards for the glare of the normal observer.
Because these standards are not easily accessible, and for the
sake of completeness, the CIE equations will be given here.
The total glare function proposed by Vos and van den Berg
(as equation 8 in the CIE report [4]) does actually give the
complete PSF. It reads:

2 · 106

0.0046)2]
1.5 + 1.5 · 105

[1 + (θ/0.045)2]
1.5

]
+

· θ2
]

+ p ·
[

1300

[1 + (θ/0.1)2]
1.5 + 0.8

[1 + (θ/0.1)2]
0.5

]}
+

where θ is the glare angle in degrees, A the age in years and p a
pigmentation factor (p = 0 for very dark eyes, p = 0.5 for brown
eyes, and p = 1.0 for blue-green Caucasians; see also [20]).

Figure 2 shows the angular course of the total glare

function for three age/pigmentation conditions. Note that
the total dynamics of the PSF span a range of about 109,
or 1,000,000,000. Due to this enormous range, differences
between various conditions of the eye may seem subtle,
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Figure 2. The CIE 1999 total glare function for a 35-year-old negroid
(continuous line), a 35-year-old blue-green eyed Caucasian (dashed
line) and a 80-year-old blue-green eyed Caucasian (dash-dotted line).

Figure 4. The CIE 1999 total glare function (PSF) integrated from
the center (0 degrees) outwards, for the same age/pigmentation con-
ditions as in Figure 2. At 90 degrees the integrated value is 1 by
definition, since the PSF is normalized. For angles smaller than 90
degrees, the fraction of light up to that angle in the PSF is indicated.
The vertical dotted line indicates 1 minute of arc. This is customarily
assumed to be the smallest detail that can be resolved by an eye
having a visual acuity of decimal 1.

when for subjective vision they are in fact very noticeable.
The differences become more clear when the curves are pre-
sented in terms of the straylight parameter s. In this way, the
approximate 1/θ2 angular dependence is taken into account.
In Figure 3, the PSF of the total glare function, multiplied by

θ2 is shown. This is the straylight parameter, s, that is also
used to represent the outcome of a straylight measurement.
In Figure 4, another useful representation of the total glare

Figure 3. The CIE 1999 total glare function (PSF) multiplied by
�2 to represent it in terms of the straylight parameter for the same
age/pigmentation conditions as in Figure 2 (Reprint with permission
of encyclopedia of the eye, Darlene A. Dartt ed.).
The fraction of light in the central part of the PSF, below 1 minute of
arc (dotted line) that determines visual acuity is only about 30%.

function is given. Here the integrated PSF is given, starting
from the center and going outwards.

For practical purposes, the CIE 1999 total glare equation is
relatively complicated. Therefore, some simplified equations
were formulated. The simplest (given as equation 9 in the
CIE report [4]) version of a disability glare formula equals
the classic Stiles-Holladay equation, in which the constant
is multiplied by an age factor. It was called the age adapted
Stiles-Holladay equation:

PSF = [Leq/Egl]S−H,agead.
=

{
1 + [A/70]4

}
· 10/θ2

which has a validity domain that runs from 3◦ to 30◦.
As it is evident that the Stiles-Holladay equation falls short

in particular below 1◦, the following equation, the simplified
glare equation (equation 10 in the CIE report [4]), may serve
in a more extended angular domain:

PSF = [Leq/Egl]simpl. = 10/θ3 +
{

1 + [A/62.5]4
}

· 5/θ2,

which has a validity domain from 0.1◦ to 30◦.
To also cover the very large angle domain, more terms of

the total glare equation must be taken into account. This is the
general glare equation (equation 11 in the CIE report [4]):

PSF = [Leq/Egl]gen.
= 10/θ3 + [5/θ2 + 0.1 · p/θ] ·
{

1 + [A/62.5]4
}

+ 2.5 · 10−3 · p,
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Figure 5. The simplified versions of the total glare equation of a 35-
year-old blue-green eyed Caucasian. The age adapted Stiles Holladay
equation is shown with the thick line, the simplified glare equation as
+, and the general glare equation as o. For clarity also the total glare
function is plotted for a 35-year-old negroid (continuous line), a 35-
year-old blue-green eyed Caucasian (dashed line) and a 80-year-old

blue-green eyed Caucasian (dash-dotted line).

which has a validity domain that stretches from 0.1◦ all the
way up to the very limit of the field of view, somewhere around
100◦.

An overview of the simplified versions of the total glare
equation is given in Figure 5 for a blue-green eyed 35-year-old
Caucasian.
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