Support our work
Decorative header background

Compensatory fronto-parietal hyperactivation during set-shifting in unmedicated patients with Parkinson’s disease

Publication year 2015
Published in Neuropsychologia
Authors Niels J H M Gerrits, Y.D. van der Werf, Kim M W Verhoef, Dick J Veltman, Henk J Groenewegen, Henk W Berendse, Odile A van den Heuvel

Patients with Parkinson’s disease (PD) often suffer from impairments in executive functions, such as mental rigidity, which can be measured as impaired set-shifting. Previous studies have shown that set-shifting deficits in patients with PD result from hypo-excitation of the caudate nucleus and lateral prefrontal cortices. The results of these studies may have been influenced by the inclusion of patients on dopaminergic medication, and by choosing set-shifting paradigms in which performance also depends on other cognitive mechanisms, such as matching-to-sample. To circumvent these potential confounding factors, we tested patients with PD that were not on dopamine replacement therapy, and we developed a new feedback-based paradigm to measure the cognitive construct set-shifting more accurately. In this case-control study, 18 patients with PD and 35 well-matched healthy controls performed the set-shifting task, while task-related neural activation was recorded using functional magnetic resonance imaging. Behaviourally, PD patients, compared with healthy controls, made more errors during repeat trials, but not set-shift trials. The patients, compared with controls, showed increased task-related activation of the bilateral inferior parietal cortex, and the right superior frontal gyrus, and decreased activation of the right ventrolateral prefrontal cortex during set-shift trials. Our findings suggest that, despite decreased task-related activation of the right ventrolateral prefrontal cortex, these early-stage unmedicated patients with PD do not yet suffer from set-shifting deficits due to compensatory hyperactivation in the inferior parietal cortex and the superior frontal gyrus.

Support our work!

The Friends Foundation facilitates groundbreaking brain research. You can help us with that.

Support our work