Support our work
Decorative header background

How to Identify Responders and Nonresponders to Dorsal Root Ganglion-Stimulation Aimed at Eliciting Motor Responses in Chronic Spinal Cord Injury

Research group De Zeeuw
Publication year 2021
Published in Neuromodulation : journal of the International Neuromodulation Society
Authors C.I. De Zeeuw, Sadaf Soloukey, Judith Drenthen, Rutger Osterthun, Cecile C de Vos, Frank J P M Huygen, Biswadjiet S Harhangi,
The order of authors may deviate from the original publication due to temporary technical issues.

OBJECTIVE: While integrity of spinal pathways below injury is generally thought to be an important factor in the success-rate of neuromodulation strategies for spinal cord injury (SCI), it is still unclear how the integrity of these pathways conveying the effects of stimulation should be assessed. In one of our institutional case series of five patients receiving dorsal root ganglion (DRG)-stimulation for elicitation of immediate motor response in motor complete SCI, only two out of five patients presented as responders, showing immediate muscle activation upon DRG-stimulation. The current study focuses on post hoc clinical-neurophysiological tests performed within this patient series to illustrate their use for prediction of spinal pathway integrity, and presumably, responder-status.

MATERIALS AND METHODS: In a series of three nonresponders and two responders (all male, American Spinal Injury Association [ASIA] impairment scale [AIS] A/B), a test-battery consisting of questionnaires, clinical measurements, as well as a series of neurophysiological measurements was performed less than eight months after participation in the initial study.

RESULTS: Nonresponders presented with a complete absence of spasticity and absence of leg reflexes. Additionally, nonresponders presented with close to no compound muscle action potentials (CMAPs) or Hofmann(H)-reflexes. In contrast, both responders presented with clear spasticity, elicitable leg reflexes, CMAPs, H-reflexes, and sensory nerve action potentials, although not always consistent for all tested muscles.

CONCLUSIONS: Post hoc neurophysiological measurements were limited in clearly separating responders from nonresponders. Clinically, complete absence of spasticity-related complaints in the nonresponders was a distinguishing factor between responders and nonresponders in this case series, which mimics prior reports of epidural electrical stimulation, potentially illustrating similarities in mechanisms of action between the two techniques. However, the problem remains that explicit use and report of preinclusion clinical-neurophysiological measurements is missing in SCI literature. Identifying proper ways to assess these criteria might therefore be unnecessarily difficult, especially for nonestablished neuromodulation techniques.

Support our work!

The Friends Foundation facilitates groundbreaking brain research. You can help us with that.

Support our work