Support our work
Decorative header background

Improved interhemispheric connectivity after stress during lexical decision making

Publication year 2022
Published in Behavioural Brain Research
Authors Gesa Berretz, J. Packheiser, Oliver T Wolf, Sebastian Ocklenburg

Functional hemispheric asymmetries emerge as the left and the right hemisphere are dominant for different aspects of task processing. However, the hemispheres do not work independent of each other but share information through the corpus callosum. The integration of information across the corpus callosum is dependent on its structural integrity and functionality. Several hormones, like estradiol and progesterone, can influence this function. Since earlier work has demonstrated that long-term changes in stress hormone levels are accompanied by changes in hemispheric asymmetries in several mental disorders, the aim of the current study was to investigate whether acute stress and the associated changes in stress hormone levels also affect information transfer across the corpus callosum. For this purpose, we collected EEG data from 51 participants while completing a lexical decision task and a Poffenberger paradigm twice, once after stress induction with the Trier Social Stress Test and once after a control-condition. While there were no differences in interhemispheric transfer between the stress and the non-stress condition in the Poffenberger paradigm, we observed shorter latencies to stimuli in the left visual field in the left hemisphere at the CP3-CP4 electrode pair after stress. These results suggest that the transfer of lexical material from the right to the left hemisphere was quicker under stress. Stress may increase callosal excitability and lead to more efficient signal transfer across the corpus callosum between language related areas. Future studies using pharmacological intervention are needed to further examine cooperation of the hemispheres under stress in more detail.

Support our work!

The Friends Foundation facilitates groundbreaking brain research. You can help us with that.

Support our work