Support our work
Decorative header background

Modelling the Mechanical Parameters of Glaucoma

Publication year 2019
Published in Tissue Engineering - Part B: Reviews
Authors Pascal A M M Vroemen, T.G.M.F. Gorgels, Carroll A B Webers, Jan de Boer

Glaucoma is a major eye disease characterized by a progressive loss of retinal ganglion cells (RGCs). Biomechanical forces as a result of hydrostatic pressure and strain play a role in this disease. Decreasing intra-ocular pressure is the only available therapy so far, but is not always effective and does not prevent blindness in many cases. There is a need for drugs that protect RGCs from dying in glaucoma; to develop these we need valid glaucoma and drug screening models. Since in vivo models are unsuitable for screening purposes, we focus on in vitro and ex vivo models in this review. Many groups have studied pressure and strain model systems to mimic glaucoma, in order to investigate the molecular and cellular events leading to mechanically-induced RGC death. Therefore, the focus of this review is on the different mechanical model systems used to mimic the biomechanical forces in glaucoma. Most models use either cell or tissue strain, or fluid or gas-controlled hydrostatic pressure application and apply it to the relevant cell types such as trabecular meshwork cells, optic nerve head astrocytes, and retinal ganglion cells but also to entire eyes. New model systems are warranted in order to study concepts and test experimental compounds for the development of new drugs to protect vision in glaucoma patients.

Support our work!

The Friends Foundation facilitates groundbreaking brain research. You can help us with that.

Support our work