Support our work
Decorative header background

Nigral neuropathology of Parkinson’s motor subtypes coincide with circuitopathies

Publication year 2022
Published in Brain Structure & Function
Authors Jackson Tyler Boonstra, Hugo McGurran, Yasin Temel,
The order of authors may deviate from the original publication due to temporary technical issues.

The neuropathological substrates of Parkinson’s disease (PD) patients with motor subtypes tremor-dominance (TD), non-tremor dominance (nTD), postural instability and gait difficulty (PIGD), and akinetic-rigid (AR) are not completely differentiated. While extensive pathological research has been conducted on neuronal tissue of PD patients, data have not been discussed in the context of mechanistic circuitry theories differentiating motor subtypes. It is, therefore, expected that a more specific and tailored management of PD symptoms can be accomplished by understanding symptom-specific neuropathological mechanisms with the detail histology can provide. This scoping review gives an overview of the literature comparing TD and nTD PD motor subtypes by clarify observed pathology with underlying physiological circuitry theories. Studies using an array of pathological examination techniques have shown significant differences between TD and nTD PD subtypes. nTD PD patients show higher neuronal loss, gliosis, extraneuronal melanin deposits, and neuroaxonal dystrophy in multiple subregions of the substantia nigra (SN) related to the overactivity of the indirect motor loop. TD patients show more severe cell loss specifically in medial SN subdivisions, and have damage in the retrorubral field A-8 that projects to the dorsolateral striatum and ventromedial thalamus in the direct motor loop. Pathological studies are consistent with neuroimaging data and support contemporary mechanistic circuitry theories of PD motor symptom genesis. Further multimodal neuroimaging and histological studies are required to validate and expand upon these findings.

Support our work!

The Friends Foundation facilitates groundbreaking brain research. You can help us with that.

Support our work