Support our work
Decorative header background

Phenotypic Variation in Aicardi-Goutières Syndrome Explained by Cell-Specific IFN-Stimulated Gene Response and Cytokine Release

Publication year 2015
Published in Journal of Immunology
Authors Eloy Cuadrado, Iliana Michailidou, Emma J van Bodegraven, Machiel H Jansen, J.A. Sluijs, Dirk Geerts, Pierre-Olivier Couraud, Lidia De Filippis, Angelo L Vescovi, Taco W Kuijpers, E.M. Hol

Aicardi-Goutières syndrome (AGS) is a monogenic inflammatory encephalopathy caused by mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, or MDA5. Mutations in those genes affect normal RNA/DNA intracellular metabolism and detection, triggering an autoimmune response with an increase in cerebral IFN-α production by astrocytes. Microangiopathy and vascular disease also contribute to the neuropathology in AGS. In this study, we report that AGS gene silencing of TREX1, SAMHD1, RNASEH2A, and ADAR1 by short hairpin RNAs in human neural stem cell-derived astrocytes, human primary astrocytes, and brain-derived endothelial cells leads to an antiviral status of these cells compared with nontarget short hairpin RNA-treated cells. We observed a distinct activation of the IFN-stimulated gene signature with a substantial increase in the release of proinflammatory cytokines (IL-6) and chemokines (CXCL10 and CCL5). A differential impact of AGS gene silencing was noted; silencing TREX1 gave rise to the most dramatic in both cell types. Our findings fit well with the observation that patients carrying mutations in TREX1 experience an earlier onset and fatal outcome. We provide in the present study, to our knowledge for the first time, insight into how astrocytic and endothelial activation of antiviral status may differentially lead to cerebral pathology, suggesting a rational link between proinflammatory mediators and disease severity in AGS.

Support our work!

The Friends Foundation facilitates groundbreaking brain research. You can help us with that.

Support our work