Support our work
Decorative header background

Population receptive fields in non-human primates from whole-brain fMRI and large-scale neurophysiology in visual cortex in visual cortex

Research group Roelfsema
Publication year 2021
Published in eLife
Authors P.C. Klink, Xing Chen, Vim Vanduffel, P.R. Roelfsema

Population receptive field (pRF) modeling is a popular fMRI method to map the retinotopic organization of the human brain. While fMRI-based pRF-maps are qualitatively similar to invasively recorded single-cell receptive fields in animals, it remains unclear what neuronal signal they represent. We addressed this question in awake non-human primates comparing whole-brain fMRI and large-scale neurophysiological recordings in areas V1 and V4 of the visual cortex. We examined the fits of several pRF-models based on the fMRI BOLD-signal, multi-unit spiking activity (MUA) and local field potential (LFP) power in different frequency bands. We found that pRFs derived from BOLD-fMRI were most similar to MUA-pRFs in V1 and V4, while pRFs based on LFP gamma power also gave a good approximation. FMRI-based pRFs thus reliably reflect neuronal receptive field properties in the primate brain. In addition to our results in V1 and V4, the whole-brain fMRI measurements revealed retinotopic tuning in many other cortical and subcortical areas with a consistent increase in pRF-size with increasing eccentricity, as well as a retinotopically specific deactivation of default-mode network nodes similar to previous observations in humans.

Support our work!

The Friends Foundation facilitates groundbreaking brain research. You can help us with that.

Support our work