PublicationsComparison of neurotrophin and repellent sensitivities of early embryonic geniculate and trigeminal axons
Geniculate (gustatory) and trigeminal (somatosensory) afferents take different routes to the tongue during rat embryonic development. To learn more about the mechanisms controlling neurite outgrowth and axon guidance, we are studying the roles of diffusible factors. We previously profiled the in vitro sensitivity of trigeminal axons to neurotrophins and target-derived diffusible factors and now report on these properties for geniculate axons. GDNF, BDNF, and NT-4, but not NT-3 or NGF, stimulate geniculate axon outgrowth during the ages investigated, embryonic days 12-14. Sensitivity to effective neurotrophins is developmentally regulated and different from that of the trigeminal ganglion. In vitro coculture studies revealed that geniculate axons were repelled by branchial arch explants that were previously shown to be repellent to trigeminal axons (Rochlin and Farbman [1998] J Neurosci 18:6840-6852). In addition, some branchial arch explants and untransfected COS7 cells repelled geniculate but not trigeminal axons. Sema3A, a ligand for neuropilin-1, is effective in repelling geniculate and trigeminal axons, and antineuropilin-1, but not antineuropilin-2, completely blocks the repulsion by arch explants that repel axon outgrowth from both ganglia. Sema3A mRNA is concentrated in branchial arch epithelium at the appropriate time to mediate the repulsion. In Sema3A knockout mice, geniculate and trigeminal afferents explore medial regions of the immature tongue and surrounding territories not explored in heterozygotes, supporting our previous hypothesis that Sema3A-based repulsion mediates the early restriction of sensory afferents away from midline structures.
Support our work!
The Friends Foundation facilitates groundbreaking brain research. You can help us with that.
Support our work